

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : EMF(19EE0207) Year & Sem: II-B.Tech & II-Sem

Course & Branch: B.Tech - EEE Regulation: R19

<u>UNIT-I</u>

INTRODUCTION TO VECTOR CALCULUS

1.		5 M
	b) Given the two points A (X=2, Y=3, Z=-1) and B= (r=4, θ =25 and ϕ =120°). Find the sphere	erical
	co-ordinates of A and cartesian co-ordinates of B	5 M
2.	Point P and Q are located at (0,2,4) and (-3,1,5) calculated: 1. The Position vector P, 2. The	
	distance vector from P and Q, 3. The distance between P and Q and 4. A vector parallel to PQ v	with
		10 M
3.	Express vector B in cartesian and cylindrical systems. Given $B = 10/r a_r + r \cos\theta a_\theta + a_\phi$. Fin	d the
		10 M
4.	a) Transform the vector field W=10 a_x -8 a_y +6 a_z to cylindrical co-ordinate system at	point
	,	5 M
	b) Express $B = r^2 a_r + \sin \theta a_{\phi}$ in the cartesian co-ordinates. Hence obtain B at P (1,2,3)	5 M
5.	If $B = y a_x + (x+z) a_y$ and a point Q is located at (-2,6,3) express.1 The Point Q in cylindrica	l and
	spherical co-ordinates and 2) B in spherical coordinates.	10 M
6.	a) Given point P (-2,6,3) and A=y $a_x + (x+z) a_y$. Express A in Cylindrical coordinates.	5 M
	b) Transform the vector $A = 3i-2j-4K$ at P (x=2, y=3, Z=3) to cylindrical coordinates	5 M
7.	a) Given the two coplanar vectors $A = 3 a_x + 4 a_y$ - 5 a_z and $B = -6a_x + 2 a_y + 4 a_z$. Obtain the	e unit
	vector normal to the plane containing the vector A and B	5 M
	b) The Three fields are given by $A=2a_x - a_z$, $B=2a_x - a_y + 2a_z$, $C=2a_x - 3a_y + a_z$. Find the scalar	r and
	vector triple product.	5 M
8.	Determine the divergence of these vector fields:	
	i).P=x ⁻² yz $a_x + xz a_z$, ii) Q= r sin $\phi a_r + r^2 z a_{\phi} + z \cos \phi a_z$ and iii) T= (1/r ²) cos $\theta a_r + r \sin \theta d_z$	cos ø
	$a_{\theta} + \cos \theta a_{\phi}$	10 M
9	. Find the gradient of the following scalar fields	
	i) $V = e^{-z} \sin 2x \cosh y$, ii) $U = r^2 z \cos \phi$ and iii) $W = 10r \sin^2 \theta \cos \phi$	10 M
1	0. Determine the curl of the vector fields:	
	i).P= $x^2yz a_x + xz a_z$, ii) Q= r sin $\phi a_r + r^2 z a_{\phi} + z \cos \phi a_z$ and iii) T= $(1/r^2) \cos \theta a_r + r \sin \theta \cos \theta$	φ
	$a_{\theta}+\cos\theta a_{\phi}$	10 M

<u>UNIT –II</u> STATIC ELECTRIC FIELD

1.	(a) State and explain Coulomb's law indicating clearly the units of quantities in the equat	tion
	of force?	5M
	(b) State and prove Gauss's law and write limitations of Gauss's law?	5M
2.	Three concentrated charges of 0.25 μ C are located at the vertices of an equilateral triangl	e
	of 10 cm side . Find the magnitude and direction of the force on one charge due to	
	other two charges.	10 M
3.	a) Determine the Electric filed intensity at P(-0.2, 0, -2.3) m due to a point charge of	
	5 nc at Q (0.2,0.1, -2.5) m in air.	5 M
	b) An infinitely long uniform line charge is located at y=3, Z=5. If ρ_L = 30 n C/m, find the	ne filed
	intensity E at i) origin, ii) $P(0,6,1)$ and iii) $P(5,6,1)$	5 M
4.	Line charge density ρ_L = 24 n C/m is located in free space on the line y=1 and Z=2 m	
	a) Find E at the point P(6,-1,3), b) What point charge Q_a should be located at A (-3,4,1)	
	to make y component of total E zero at point P?	10 M
5.a) Find E at (0,0,2) m due to charged circular disc in x-y plane with $\rho_s=20$ n C/m ² and	
	radius 1m.	5M
	b) A circular disc of 10 cm radius is charged uniformly with total charge of 100µc.	
	Find E at a point 20cm on its axis.	5 M
6.7	The Electric flux density is given as $D = (r/4) a_r n C/m^2$ in free space. Calculate:	
	The Electric field intensity at r=0.25 m , The total charge within a sphere of r=0.25 m $$	10 M
7.0	Given that $A = 30 e^{-r} a_r - 2 z a_z$ in the cylindrical co-ordinates. Evaluate both sides of the	
	divergence theorem for the volume enclosed by r=2, z=0 and Z=5	10 M
8. :	a)An electric potential is given by V=(60 sin θ /r ²) v. Find V and E at P(3,60°,25°)	5 M
	b) In free space $V = x^2y(z+3)$. Find E at (3, 4, -6) and The charge within the cube	
	0 <x,y,z<1.< td=""><td>5 M</td></x,y,z<1.<>	5 M
9.a) The potential field in free space is given by $V=(50/r)$, a <r< (spherical="")="" b="" show="" td="" that<=""><td></td></r<>	
	$\rho_v=0$ for a <r </r b and find the energy stored in the region a <r </r b	5 M
	b) Two pint charges 1.5nC at (0,0,0.1) and -1.5nC at (0,0,-0.1) are in free space. Treat the	he two
	charges as a dipole at the origin and find the potential at $p(0.3,0,0.4)$	5 M
10.	a) What is the relation between electric flux density and electric field intensity?	2M
	b) Define dipole moment?	2M
	c) Define an electric dipole?	2M
	d) State vector form of coulombs law?	2M
	e) Derive Maxwell second equation?	2M

<u>UNIT –III</u>

CONDUCTORS, DIELECTRICS AND CAPACITANCE

1.	(a) Derive the continuity equation. What is its physical significance?	5M
	(b) Derive the point form of ohms law?	5M
2.	Explain the boundary conditions of two perfect dielectrics materials?	10M
3.	Explain the boundary conditions between conductor and free space?	10M
4.	a) In cylindrical coordinates J=10 e^{-100r} a _{ϕ} A/m ² . Find the current crossing through the	region
	0.01 < r < 0.02 m and 0 < z < 1 m and intersection of this region with the ϕ = constant plane	5 M
	b) An aluminum conductor is 2000 ft long and has a circular cross section with a diamet	er of 20
	mm. If there is a DC voltage of 1.2 V between the ends . Find a) The current density	b) The
	current, C power dissipated form the l=knowledge of circuit theory. Assume σ =3.8	32 *10 ⁷
	mho/m for aluminum .	5 M
5.	a) Find the magnitude of D and P for a dielectric material in which E=0.15 mV/m and	χ=4.25
		5 M
	b) Find the polarization in dielectric material with $\varepsilon_r = 2.8$ if D=3*10 ⁻⁷ C/m ²	5 M
6.	Explain the phenomenon of polarization when a dielectric slab is subjected to an electric	field?
		10M
7.	a) Derive the expression for parallel plate capacitor and capacitance of a co-axial cable?	6 M
	c) A parallel plate capacitor has an area of 0.8 m ² separation of 0.1 mm with a dielectric	
	for which $\varepsilon_r = 1000$ and a field of 10^6 V/m. Calculate C and V	4 M
8.	Find V at P (2,1,3) for the field of two coaxial conducting cones, with V=50 V at θ =30	
	and V=20 V at θ =50.	10 M
9	Two parallel conducting disc are separated by distance 5 mm at $z=0$ and $z=5$ mm	
	If V=0 and V=100 v at z=5 mm, find the charge densities on the disc.	10 M
10	. a)Determine whether or not the following potential fields satisfy the Laplace's eq	
10		
	i) $V=x^2-y^2+z^2$ ii) $V=r\cos\phi + z$ and	5 M
	b) Derive Laplace's and Poisson's Equation	5 M

QUESTION BANK 2021

<u>UNIT –IV</u>

STATIC MAGNETIC FIELDS

1.	Using Biot-savart's law. Find \vec{H} and \vec{B} due conductor of finite length?	10M
2.	a) Explain maxwell's second equation?	5M
	b) State and explain ampere's circuital law?	5M
3.	Evaluate both sides of the stokes theorem for the filed H=6xy $a_x - 3y^2 a_y$ A/m and the rect	angular
	path around the region $2 \le x \le 5$, $-1 \le y \le 1$, Z=0. Let the positive direction of ds be a_z .	10 M
4.	a) Find the flux passing the portion of the plane $\phi = \pi/4$ defined by 0.01 <r<0.05 and<="" m="" td=""><td></td></r<0.05>	
	$0 < z < 2$ m. A current filament of 2.5 A is along the z axis in the a_z direction in free space.	5 M
	b) In cylindrical coordinates $B = (2.0/r) a_{\phi}$ tesla. Determine the magnetic flux ϕ crossing	
	the plane surface defined by $0.5 < r < 2.5$ m and $0 < z < 2$ m.	5 M
5.	In cylindrical co-ordinates $A=50 r^2 a_z wb/m$ is a vector magnetic potential in a certain	
	region of free space. Find H, B, J and using J find the total current I crossing the surface	
	$0 < r < 1$, $0 < \phi < 2\pi$ and Z=0.	10 M
6.	a) A Point charge of Q=-1.2 C has a velocity V= $(5 a_x + 2 a_y - 3a_z)m/s$. Find the	
	magnitude of the force exerted on the charge if i) $E=-18 a_x + 5 a_y - 10 a_z V/m$ and	
	ii) B=-4 a_x +4 a_y +3 a_z T	3 M
	b) A magnetic field $B = 3.5 \times 10^{-2} a_z$ exerts a force on a 0.3 m long conductor along	
	x axis. IF a current of 5 A flows in $-a_x$ direction, determine what force must be	
	applied to hold conductor in position.	3 M
	c) Determine the force per meter length between two long parallel wires A and B	
	separated by distance 5 cm in air and carrying currents of 40 A in the same direction.	4 M
7.	A rectangular loop in Z=0 plane has corners at $(0,0,0)$, $(1,0,0)$, $(1,2,0)$ and $(0,2,0)$.	
	The loop carries a current of 5 A in a_x direction. Find the total force and torque	
	on the loop produced by the magnetic field $B=2 a_x+2a_y-4a_z wb/m^2$.	10 M
8.	Derive the expression for self-inductance of solenoid, toroid and coaxial cable	10M
9.	a) Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical	7
	tube of 6 cm diameter. The length of the tube is 60 cm and the solenoid is in air.b) Find inductance per unit length of a co-axial cable if radius of inner and outer conduct	5 M
	are 1 mm and 3 mm respectively. Assume relative permeability unity.	5 M
10.	a) Calculate the inductance of a 10 m length of coaxial cable filled with a material for	5 101
	which $\mu_r = 80$ and radii inner and outer conductors are 1 mm and 4 mm respectively.	5 M
	b) A straight long wire is situated parallel to one side of a square coil. Each side of the	
	coil has a length of 10 cm. The distance between straight wire and the center of the	7) f
	coil is 20 cm. Find the mutual inductance of the system .	5 M

<u>UNIT –V</u>

TIME VARYING FIELDS AND MAXWELL'S EQUATIONS

1.	Write Maxwell's equation in good conductors for time varying fields and static fields	s both in
	differential and integral form?	10 M
2.	Explain faradays law of electromagnetic induction and there from derive maxwell's eq	uation in
	differential and integral form?	10M
3.	Derive the equation of Continuity for time varying fields?	10M
4.	Derive an expression for motional and transformer induced emf?	10M
5.	What is displacement current? Explain physical significance of displacement current?	10M
6.	Derive expressions for integral and point forms of poynting Theorem?	10M
7.	Explain faradays law of electromagnetic induction and derive the expression for induced	d e.m.f?
		10M
8.	a) Define skin depth?	2M
	b) Define displacement current?	2M
	c) State Faraday's law of electromagnetic induction?	2M
	d) Write Maxwell equations in time varying fields?	2M
	e) Define pointing vector?	2M
9.	A Parallel plate capacitor with plate area of 5 cm ² and plate separation of 3mm has a	
	Voltage of 50 sin 10^3 t volts applied to its plates. Calculate the displacement current	
	Assuming $\epsilon = 2\epsilon_0$	10 M
10) An area of 0.65 m^2 in the plane Z=0 encloses a filamentary conductor. Find the	
	induced voltage if B= 0.05 cos 10 ³ t (a_y+a_z)/ $\sqrt{2}$ tesla.	10 M

Prepared by: J.GOWRISHANKAR AND N.SRAVANTHI

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : EMF(18EE0203) Year & Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Regulation: R18

<u>UNIT-I</u>

INTRODUCTION TO VECTOR CALCULUS

In three dimensional coordinate systems, coordinates are
 A)perpendicular to each other
 B) parallel to each other
 C) same direction for each other
 D)opposite direction for each other

2. Three dimensional coordinate system is one in which coordinates intersect each other at A) negative points B) zero points C)positive points D) absolute points

3. Rectangular coordinate system is also known as

- A) Space coordinate system B) Polar coordinate system
- C) Cartesian coordinate system D)Planar coordinate system
- 4. The range of azimuthal angle φ in the spherical polar coordinates is
 A) [0,2π] B) [0,π] C) [0,π/2] D) [-π, +π]
- 5. The equation to a surface in spherical coordinates is given by $\theta = \pi/3$. The surface is a. A) sector of a circle
 - B) A cone making an angle of $\pi/3$ with the z-axis
 - C) A vertical plane making an angle of $\pi/3$ with the z-axis
 - D) A vertical plane making an angle of $\pi/3$ with the x-axis
- 6. The equation to a surface in spherical coordinates is given by $\varphi = \pi/3$. The surface is a. A) sector of a circle
 - B) A cone making an angle of $\pi/3$ with the z-axis
 - C) A vertical plane making an angle of $\pi/3$ with the z-axis
 - D) A vertical plane making an angle of $\pi/3$ with the x-axis
- 7. Expressed in spherical coordinates, the equation $x^2+y^2+z^2=4z$ becomes A) $4\cos\theta\sin\Phi$ B) $4\sin\theta\cos\Phi$ C) $4\cos\theta$ D) $4\sin\theta$
- 8.The cylindrical coordinate system is also referred to asA) Cartesian system B) Circular system C) Spherical system D) Space system
- 9. Transform the point (-2,6,3) into cylindrical coordinates.
 A) (6.325,-71.57,3) B) (6.325,71.57,3) C) (6.325,73.57,3) D) (6.325,-73.57,3)
- 10. A charge located at point p (5,30⁰,2) is said to be in which coordinate system?A) Cartesian system B) Cylindrical system C) Spherical system D) Space system

QUESTION BANK 2021 11. Transform the spherical system B = $(10/r)i + (10\cos\theta)j + k$ into cylindrical form at $(5, \pi/2, -2)$ B) 2.467i – j + 1.167k D) 2.467i + j - 1.167k 12. Convert the given rectangular coordinates A(2,3,1) into corresponding cylindrical coordinates D) (3.61,56.31,1) A) (3.21,56.31,1) B) (3.21,57.31,0) C) (3.61,57.31,0)

- 13. Convert the point (3,4,5) from Cartesian to spherical coordinates A) $(7.07,45^{\circ},53^{\circ})$ B) $(0.707,45^{\circ},53^{\circ})$ C) $(7.07,54^{\circ},63^{\circ})$ D) $(0.707,54^{\circ},63^{\circ})$ 14. Find the spherical coordinates of A(2,3,-1)
- A) (3.74, 105.5[°], 56.13[°]) B) (3.74, 105.5[°], 56.31[°]) C) $(3.74, 106.5^{\circ}, 56.13^{\circ})$ D) $(3.74, 106.5^{\circ}, 56.31^{\circ})$
- 15. Find the Cartesian coordinates of $B(4,25^0,120^0)$ B) (-0.845, 1.462, 3.625) A) (0.845, 1.462, 3.625) D) (8.45, 2.462, 6.325) C) (-8.45, 2.462, 6.325)

A) 2.467i + j + 1.167k

C) 2.467i – j – 1.167k

- 16. Given $B = (10/r)i + (r\cos \theta) i + k$ in spherical coordinates. Find Cartesian points at (-3,4,0) A) -2i + jB) 2i + kC) i + 2jD) -i - 2k
- 17. The scalar factor of spherical coordinates is A) 1, r, r sin θ B) 1, r, r C) r, r, 1 D) r, 1, r
- 18. Transform the vector (4, -2, -4) at (1, 2, 3) into spherical coordinates. A) 3.197i - 2.393j + 4.472kB) -3.197i + 2.393j - 4.472k C) 3.197i + 2.393j + 4.472kD) -3.197i – 2.393j – 4.472k
- 19. Cylindrical systems have the following scalar values respectively A) 1, ρ,1 B) 1, 1, 1 C) 0,1,0 D) 1,0,0T
- 20. he volume of a parallelepiped in Cartesian is A) dV = dx dy dz B) dV = dx dy C) dV = dy dz D) dV = dx dz
- 21. Transform the vector A = 3i 2j 4k at P(2,3,3) to cylindrical coordinates B) -3.6j + 4k C) 3.6j - 4kA) -3.6j - 4kD) 3.6j + 4k
- 22. Which of the following criteria is used to choose a coordinate system? A) Distance B) Intensity C) Magnitude d) Geometry
- 23. Vector transformation followed by coordinate point substitution and vice-versa, both given the same result. Choose the best answer. A) Possible, when the vector is constant B) Possible, when the vector is variable C) Possible in all cases D) Not possible
- 24. The polar form of Cartesian coordinates is A) Circular coordinates B) Spherical coordinates C) Cartesian coordinates D) Space coordinates
- 25. The cross product of the vectors 3i + 4j 5k and -i + j 2k is, A) 3i - 11i + 7k B) -3i + 11i + 7k C) -3i - 11i - 7k D) -3i + 11i - 7k

26. Which of the following an A) Gradient	re not vector fun B) Divergence	ctions in Electromagnetics?
C) Curl	D) There is no	non- vector functions in Electromagnetics
27. The work done of vectors using,	force F and dist	tance d, separated by angle θ can be calculated
0	product C) Ad	dition of two vectors D) Cannot be calculated
28. Find whether the vectorsA) Parallel B) Colline	-	(1,-1) and (0,3,1)(0,0,1)(0,1,-1) D) Data insufficient
 29. When two vectors are period. A) Dot product is zero. C) Both are zero. 30. Find the gradient of t = x. A) i + 10j + 0.135k. Example: 	B) Cross produc D) Both are not $x^{2}y + e^{z}$ at the point	et is zero necessarily zero
31. Curl of gradient of a vec A) Unity B) Zero		D) Depends on the constants of the vector
32.Find the gradient of the function A $i + j + k$ B) $2i + 2j$, $x^2 + y^2 + z^2$ at (1,1,1) + $2yj + 2zk$ D) $4xi + 2yj + 4zk$
33. Find the gradient of the f A) cos x i – sin y j B) co		$\cos y$. C) $\sin x i - \cos y j$ D) $\sin x i + \cos y j$
34. Compute the divergence A) 0 B) 1		+ yj + zk. D) 3
35. Find the divergence of th A) -1 B) 0	e vector yi + zj - C) 1	+ xk. D) 3
36. Given $D = e^{-x} \sin y i - e^{-x}$ A) 3 B) 2		
37.Find the divergence of the A) $(1 - x)(1 + e^{-x})$ B) (i + y j - xz k C) $(1 - x)(1 - e)$ D) $(x - 1)(1 - e)$
the field.		xy j + 5xz ² k at (1,1,-0.2) and state the nature of $(1,1,-0.2)$
A) I, solenoidal B) $0, s$	solenoidal C)	1, divergent D) 0, divergent
39. Find whether the vector isA) Yes, solenoidalC)) Solenoidal with negative solution of the solutio		yz i + xz j + xy k B) No, non-solenoidal D) Variable divergence
40. Identify the nature of the A) Solenoidal, irrotationa C) Solenoidal, irrotationa	al B) Divergen	

			QUESTION BANK 2	2021
41. The curl of a curl of a veA) Scalar B) Vector	-	Non zero value		
C) $2i - exj + cos ax k$ 43. Find the curl of the vector	B) $i - ex j$ D) $i - ex j$	$\dot{j} + \cos ax k$ k yj + (z - 4y)k		
	TT	NIT –II		
		<u>NII – II</u> LECTRIC FIELD		
1. A Quantity which gives				[
A) Vector	B) Scalar	C) Unit Vec	etor D) None	
2. The charge of an electron	ı is			[
A) 1.60219×10 ⁻¹⁹ C	B)-1.60219×10 ¹⁹ C	C)-1.60219×10 ⁻¹⁹ (C D) 1.60219×10 ¹⁹ C	
3. The two equal and oppos	ite point charges are se	eparated by a very small	all distance is known as	[
A) Dipole moment	B) Potential gradient		D) None	
4. Find the Laplacian of the		$x^2+y^2+z^2$		[
A) 2V/m ²	B) 6 V/m ²	C)4 V/m ²	D)8 V/m ²	
5. The _ is defined as the tar	igential force times the	e radial distance at wh	ich it acts	[
A) Power	B) Energy	C) Torque	D) Magnetic flux den	sity
6. Steady magnetic fields are	e governed by	law.		[
A) Biot–Savart's	B)Ampere's Circuita	C)Both (A) and (I	B) D)None of these	
7. Four fundamental equatio	e	0 1		[
A) Fleming's laws	B) faraday's laws	· _	s D) maxwell's equatio	n
8. According to poisson's eq		ential function, then		[
A) $\nabla^2 V = -\rho/\epsilon$	B) $\nabla^2 V=-\rho/E$	C) $\nabla^2 V=0$	D)none of these	
9. According to Gauss law ψ	<i>y</i> =			[
A) Q _{end}	B) \int_{S} D. dS	C) $\int_V \rho_V dV$	D) ALL	
10. Which of the following i	is a vector quantity?			[
A) Electrical potentia	al	B) Electrical field in	ntensity	
C) Electrical charge		D) none of the abov	/e	
11. An infinite number of ch	arge each equal to q an	re placed along the x-	axis at x=1,x=2,x=3 and	so on .
The notantial at $x=0$ due	to this set of charges v	will be		[
The potential at x=0 due	_			

			QUESTION BANK	2021
12. An infinite number of	charges, each equal to	1 q are placed at n=1, 3	, 9, 27, 81 The elec	tronic
potential at n= 0 will		• •		[
A) q	B) 3/2 q	C) 2 q	D) 5 q/2	
13. A tiny particle carryin	g a charge of 0.2 could	omb is accelerated throu	igh a P.D of 1000 V. 7	The K.E.
acquired by the particle	e will be		-	[
A) 100 J	B) 200 J	C) 300 J	D) 400 J	
14. Given V=2 x² y-12z, V	V at (0, 0 ,6) is			[
A) -72V	B) 62V	C) 70 V	D) 0 V	
15. The unit of electric fie	eld intensity is			[
A) A/m	B) V/m	C) V/m	D) A/sec	
16. The total flux out of a	closed surface is equal	to the net charge with	in the surface. This sta	tement a
expression of a				[
A) gauss law	B) divergence theorem	rem C)faraday's law	D)Maxwell's equat	tions
7. In homonogenous line	ear, isotropic and station	nary media, for a plane	electromagnetic wave	[
A) $\nabla \cdot \mathbf{D} = \rho$	B) $\nabla_{.D} = \rho$	$C)^{\nabla * D = \rho}$	D) none	
18. It is given that electric	e flux density (D) in ace	ertain region is expresse	d by $D = (1/r)a_r$ in sphere:	erical
co-ordinates. The charg	ge density (u) in this re	gion is given by		[
A) l/r	B) l/r^2	C) $-l/r^2$	D) r ²	
19. The electric field inter	nsity (E) and electric po	otential (V) are interrela	ted by	[
A) E= -Divergence	ce of V B) E= Dive	ergence of V C) E=-gra	adient of V D) none of	of these
20. For an infinite line cha	arge			[
A) $E = \rho_S / 2\epsilon$	B) $E = \rho_S / 2 \pi \epsilon$	C) E= $\rho_S / 4 \pi \epsilon$	D) None	
21. Potential at R due to a	point charge Q is V =			[
A) V=Q/4 $\pi \epsilon R$	B) V=Q/4 $\pi \epsilon R^2$	C) V=QR/ $4\pi \epsilon$	D) None	
22. Point charges 30nc,-20	Onc and 10nc are locate	ed at (-1, 0, 2), (0, 0, 0)	and (1, 5,-1) respective	ely. The
total flux leaving a cub	be of side 6 m centered	at the origins is		[
A) 20nc	B)-2nc	C) 10nc	D) -10nc	
23. Inside a hollow spheri	cal conductor			[
A) Electrical field is	zero B) I	Electrical field is consta	nt	
C) Electrical field ch	anges with the magnitu	de of charge given to th	ne conductor	
D) None of the above	e			
	radius can attain a ma	ximum potential of		ſ
24. A sphere of one meter		1		

A) CoulombB) Coulomb/m²C) WeberD) Newton/ Coulomb30. Coulomb's law States thatIIIIA) F=Q1Q2/4π eR²B) F=Q1/4π e RC) F=Q2/4π RD) NoneI31. The electric flux density D is related to E as[D) NoneI32. The electric displacement current density is measured inC) D=eED) NoneI33. Conductivity is measured inB) coulombs / meter ²C) volts/mD) amp/m²I33. Conductivity is measured inB) ohms/mC) mho-mD) mhos/mII34. The relation between electric polarization and susceptibility indicates that electric Polarizations is C) Proportional to susceptibilityB) inversely proportional to susceptibility D) proportional to susceptibilityI35. The divergence theorem applies to a function $V = x^2 + y^2 - z$ [Ia) Static field onlyB) the varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Potential function $V = x^2 + y^2 - z$ [Ia) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ [37. The electric flux density (D) and the electric field intervity (E) interrelated by[Ia) $D = eE$ B) $D = E/e$ C) $D = eE^2$ D) $D = \mu E$				QUESTION BANK	2021
C) Net flux emanating from surface D) none of these 26. A plane z=10 m carries charge 20 nc/m ² . Electric field intensity at the origin is [] A) -15 a_x V/m B) -36 πa_x V/m C) -72 pia_x V/m D) -360 πa_x V/m 27. Point charges $Q_1 = 1$ nc and $Q_2 = 2$ Nc are at a distance apart. Which of the following statements are correct? []] A) The force on Q_1 is repulsive B) the force on Q_2 is the same in magnitude as that-on Q_1 C) As the distance between them decreases, the force on Q_1 increases linearly D) All the above 28. Find the Laplacian of the Potential function $V=2x^2+y^2+z^2$ []] A) Coulomb B) Coulomb/m ² C) 4 V/m2 D) 8 V/m2 29. The unit of electric flux is []] A) Coulomb B) Coulomb/m ² C) Weber D) Newton/ Coulomb 30. Coulomb's law States that []] A) D=E B) cD=E C) D=cE D) None 31. The electric divatestry D is related to E as []] A) D=E B) cD=E C) D=cE D) None 32. The electric displacement current density is measured in []] A) ohn-m B) ohns/m D) mho/m 34. The relation between electric polarization and susceptibility indicates that electric Polarizations is []] A) Independent of susceptibility D is prediction and susceptibility indicates that electric Polarizations is []] A) Independent of susceptibility B) time varying field only C) both A & B D) magnetic fields only 35. The divergence theorem applies to []] A) Independent of susceptibility B) time varying field only C) both A & B D) magnetic fields only A) Static field only B) time varying field only C) both A & B D) magnetic fields only A) Static field only B) time varying field only C) both A & B D) magnetic fields only A) Static field only B) time varying field only C) both A & B D) magnetic fields only A) Static field only B) time varying field only C) both A & B D) magnetic fields only A) D=E B) D=E/e C) D=EE D) D=\mu E 36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ []] A) D=\mu E B) D=E/e C) D=EE ² D) D=\mu E 37. The electric flux density (D) and the electric field intensity (E) interrelated	25. Surface integral of electric field in	ntensity is			[]
26. A plane z=10 m carries charge 20 nc/m ² .Electric field intensity at the origin is [] A) -15 a_x V/m B) -36 πa_x V/m C) -72 pi a_x V/m D) -360 πa_x V/m 27. Point charges $Q_4 = 1$ nC and $Q_2 = 2$ Nc are at a distance apart. Which of the following statements are correct? [] A) The force on Q_1 is repulsive B) the force on Q_2 is the same in magnitude as that-on Q_1 C) As the distance between them decreases, the force on Q_1 increases linearly D) All the above 28. Find the Laplacian of the Potential function V=2x ² +y ² +z ² [] A) 2V/m2 B) 6 V/m2 C) 4 V/m2 D) 8 V/m2 29. The unit of electric flux is [] A) Coulomb B) Coulomb/m ² C) Weber D) Newton/ Coulomb 30. Coulomb's law States that [] A) Coulomb's law States that [] A) D=E B) $p=E$ C) D= pE D) None 31. The electric flux density D is related to E as [] A) D=E B) $eD=E$ C) D= eE D) None 32. The electric dislacement current density is measured in [] A) coulombs/meter B) coulombs /meter ² C) volts/m D) amp/m ² 33. Conductivity is measured in [] A) ohm-m B) ohms/m C)mho-m D) mhos/m 34. The relation between electric polarization and susceptibility indicates that electric folarizations is [] A) Independent of susceptibility B) inversely proportional to susceptibility C) Proportional to square root of susceptibility D) proportional to susceptibility C) Proportional to square root of susceptibility D) proportional to susceptibility 35. The divergence theorem applies to a [] A) Static field only B) time varying field only C) both A & B D) magnetic fields only 36. Find the Laplacian of the Potential function V=x ² +y ² -z [] A) 2V/m2 B) 6 V/m2 C) 4 V/m2 D) 8 V/m2 37. The electric flux density (D) and the electric field intensity (E) interrelated by [] A) D=cE B) D=E/c C) D=cE ² D) D=\muE 38. First Maxwell's equation is []	A) Electrical charge	В) differential of vol	ume flux	
A) -15 a_x V/m B) -36 πa_x V/m C) -72 pia_x V/m D) -360 πa_x V/m 27. Point charges $Q_1 = 1$ nC and $Q_2 = 2$ Nc are at a distance apart. Which of the following statements are correct? [[] A) The force on Q_1 is repulsive B) the force on Q_2 is the same in magnitude as that-on Q_1 C) As the distance between them decreases, the force on Q_1 increases linearly D) All the above 28. Find the Laplacian of the Potential function V=2x ² +y ² +z ² [] A) 2V/m2 B) 6 V/m2 C) 4 V/m2 D) 8 V/m2 29. The unit of electric flux is [] A) Coulomb B) Coulomb/m ² C) Weber D) Newton/ Coulomb 30. Coulomb's law States that [] A) F=Q1Q2/4 π cR ² B) F=Q1/4 π c R C) F=Q2/4 π R D) None 31. The electric flux density D is related to E as [] A) D=E B) cD=E C) D=cE D) None 32. The electric displacement current density is measured in [] A) coulombs/meter B) coulombs /meter ² C) volts/m D) amp/m ² 33. Conductivity is measured in [] A) ohm-m B) ohms/m C)mho-m D) mhos/m 34. The relation between electric polarization and susceptibility indicates that electric Polarizations is [] A) Independent of susceptibility B) inversely proportional to susceptibility C) Proportional to square root of susceptibility D) proportional to susceptibility 35. The divergence theorem applies to a [] A) Static field only B) time varying field only C) both A & B D) magnetic fields only 36. Find the Laplacian of the Potential function V=x ² +y ² -z. [] A) 2V/m2 B) 6 V/m2 C) 4 V/m2 D) 8 V/m2 37. The electric flux density (D) and the electric field intensity (E) interrelated by [] 38. First Maxwell's equation is []]	C) Net flux emanating from s	urface D) none of these		
27. Point charges $Q_1 = 1$ nC and $Q_2 = 2$ Nc are at a distance apart. Which of the following statements are correct? [] A) The force on Q_1 is repulsive B) the force on Q_2 is the same in magnitude as that-on Q_1 C) As the distance between them decreases, the force on Q_1 increases linearly D) All the above 28. Find the Laplacian of the Potential function $V=2x^2+y^2+z^2$ [] A) 2V/m2 B) 6 V/m2 C) 4 V/m2 D) 8 V/m2 29. The unit of electric flux is [] A) Coulomb B) Coulomb/m ² C) Weber D) Newton/ Coulomb 30. Coulomb's law States that [] A) F=Q1Q2/4 π cR ² B) F=Q1/4 π c R C) F=Q2/4 π R D) None 31. The electric flux density D is related to E as [] A) D=E B) cD=E C) D=cE D) None 32. The electric displacement current density is measured in [] A) coulombs/meter B) coulombs /mter ² C) volts/m D) amp/m ² 33. Conductivity is measured in [] A) ohm-m B) ohms/m C)mho-m D) mhos/m 34. The relation between electric polarization and susceptibility indicates that electric Polarizations is [] A) Independent of susceptibility B) inversely proportional to susceptibility C) Proportional to square root of susceptibility D) proportional to susceptibility C) Proportional to square root of susceptibility D) proportional to susceptibility 35. The divergence theorem applies to a [] A) Static field only B) time varying field only C) both A & B D) magnetic fields only 36. Find the Laplacian of the Potential function $V=x^2+y^2-x$ [] A) 2V/m2 B) 6 V/m2 C) 4 V/m2 D) 8 V/m2 37. The electric flux density (D) and the electric field intensity (E) interrelated by [] 38. First Maxwell's equation is [] 38. First Maxwell's equation is [] 39. First Maxwell's equation is [] 30. Find the square ont of susceptic field intensity [] 30. D=aE [] 30. D=aE [] 31. D=aE [] 33. D=aE [] 33. First Maxwell's equation is [] 33. First Maxwell's equation is [] 34. First Maxwell's equation is [] 35. First Maxwell's equation is [] 36. Find the square ont of susceptic field intensity [] 37. T	26. A plane z=10 m carries charge 20) nc/m ² .Electric f	ield intensity at the	origin is	[]
correct? [] A) The force on Q₁ is repulsive B) the force on Q₂ is the same in magnitude as that on Q₁ C) As the distance between them decreases, the force on Q₁ increases linearity D) All the above 28. Find the Laplacian of the Potential function V=2x²+y²+z² [] A) 2V/m2 B) 6 V/m2 C) 4 V/m2 D) 8 V/m2] 29. The unit of electric flux is [] A) Coulomb B) Coulomb/m² C) Weber D) Newton/ Coulomb 30. Coulomb's law States that [] A) F=Q1Q2/4π cR² B) F=Q1/4π c R C) F=Q2/4π R D) None [] 31. The electric flux density is related to E as [] [] A) D=E B) coulombs/meter B) coulombs/meter is neasured in [] A) oculombs/meter B) ohms/m C) mho-m D) mhos/m [] 33. Conductivity is measured in [] [] A) Independent of succeptibility B) ohms/m C) mho-m D) mhos/m [] A) Independent of succeptibility D) proportional to succeptibility []<	A) -15 <i>a_z</i> V/m B) -36	$\pi a_z V/m$ C) -72 pi a_z V /m	D) -360 π a _z V/m	
A) The force on Q_1 is repulsive B) the force on Q_2 is the same in magnitude as that-on Q_1 C) As the distance between them decreases, the force on Q_2 is the same in magnitude as that-on Q_1 D) All the above 28. Find the Laplacian of the Potential function $V=2x^2+y^2+z^2$ [] A) $2V/m2$ B) $6V/m2$ C) $4V/m2$ D) $8V/m2$ 29. The unit of electric flux is [] A) Coulomb B) $Coulomb/m^2$ C) Weber D) Newton/ Coulomb 30. Coulomb's law States that [] A) $F=Q1Q2/4\pi \epsilon R^2$ B) $F=Q1/4\pi \epsilon R$ C) $F=Q2/4\pi R$ D) None 31. The electric flux density D is related to E as [] A) $D=E$ B) $\epsilon D=E$ C) $D=\epsilon E$ D) None 32. The electric displacement current density is measured in [] A) coulombs/meter B) coulombs /meter ² C) volts/m D) amp/m ² 33. Conductivity is measured in [] A) ohm-m B) ohms/m C)mho-m D) mhos/m 34. The relation between $e ectric polarization and susceptibility indicates that e ectric Polarizations is []A) Independent of susceptibility B) inversely proportional to susceptibilityC) Proportional to square root of susceptibility mD) proportional to susceptibility35. The divergence theorem applies to a []A) Static field only B) time varying field only C) both A & B D) magnetic fields only36. Find the Laplacian of the Potential function V=x^2+y^2-z []A) 2V/m2 B) 6V/m2 C) 4V/m2 D) 8V/m237. The electric flux density (D) and the electric field intensity (E) interrelated by []A) D=\epsilon E B) D=E/\epsilon C) D=\epsilon E^2 D) D=\mu E38. First Maxwell's equation is []$	27. Point charges $Q_1 = 1$ nC and $Q_2 = 2$	Nc are at a dista	nce apart. Which of	the following statem	nents are
$ \begin{array}{c c c c c c } C) As the distance between them decreases, the force on \mathcal{Q}_1 increases linearly D All the above \begin{array}{c c c c c c } 28. Find the Laplacian of the Potential function V=2x^2+y^2+z^2 [] \begin{array}{c c c c } 28. Find the Laplacian of the Potential function V=2x^2+y^2+z^2 [] \begin{array}{c c c c } 28. Find the Laplacian of the Potential function V=2x^2+y^2+z^2 [] \begin{array}{c c c } 28. Find the Laplacian of the Potential function V=2x^2+y^2+z^2 [] \begin{array}{c c c } 28. Find the Laplacian of the Potential function V=2x^2+y^2+z^2 [] \begin{array}{c c } 28. Find the Laplacian of the Potential function V=2x^2+y^2+z^2 [] \\ A) 2V/m2 & B \\ B \\ C \\ A \\ D \\ C \\ C$	correct?				[]
D) All the above $28. Find the Laplacian of the Potential function V=2x^2+y^2+z^2 [[] 2A) 2V/m2 B) 6 V/m2 C) 4 V/m2 D) 8 V/m2 [] 29. The unit of electric flux is [] 30. Coulomb's law States that [] 30. Coulomb's law State [] 30. Coulomb's law States that [] 30. Coulomb's law States [] 30. Coulow Supervisition [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Winz [] 30. Coulow Supervisition [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Winz [] 30. Static field only [] 30. Win$	A) The force on Q_1 is repulsi	ve B) the	force on Q_2 is the s	ame in magnitude as	that-on Q 1
28. Find the Laplacian of the Potential function $V=2x^2+y^2+z^2$ []A) $2V/m2$ B) $6V/m2$ C) $4V/m2$ D) $8V/m2$ 29. The unit of electric flux is[]A) CoulombB) Coulomb/m²C) WeberD) Newton/ Coulomb30. Coulomb's law States that[]A) $F=Q1Q2/4\pi \ \epsilon R^2$ B) $F=Q1/4\pi \ \epsilon R$ C) $F=Q2/4\pi \ R$ D) None31. The electric flux density D is related to E as[]A) $D=E$ B) $\epsilon D=E$ C) $D=\epsilon E$ D) None32. The electric displacement current density is measured in[]A) coulombs/meterB) $\epsilon D=E$ C) $D=\epsilon E$ D) amp/m²33. Conductivity is measured in[]A) ohm-mB) ohms/mC) mho-mD) mhos/m34. The relation between electric polarization and susceptibility indicates that electric Polarizations is[] C Proportional to square root of susceptibilityD) proportional to susceptibility[]35. The divergence theorem applies to a[][]A) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Votential function $V=x^2+y^2-z$ [][A) $2V/m2$ B) $6V/m2$ C) $4V/m2$ D) $8V/m2$]37. The electric flux density (D) and the electric field intensity (E) interrelated by[]A) $D=\epsilon B$ B) $D=E/\epsilon$ C) $D=\epsilon E^2$ D) $D=\mu E$ 36. Find the Laplacian of the Votentic field intensity (E) interrelated by[C) As the distance between th	em decreases, the	e force on Q 1 increa	ses linearly	
A) $2V/n2$ B) $6 V/n2$ C) $4 V/n2$ D) $8 V/n2$ 29. The unit of electric flux is[A) CoulombB) Coulomb/m ² C) WeberD) Newton/ Coulomb30. Coulomb's law States that[A) F=Q1Q2/4 πcR^2 B) F=Q1/4 πcR C) F=Q2/4 πR D) None31. The electric flux density D is related to E as[A) D=EB) $cD=E$ C) D= cE D) None32. The electric displacement current density is measured in[A) coulombs/meterB) $cD=E$ C) D= cE D) None33. Conductivity is measured in[A) ohm-mB) ohms/mC) mho-mD) mhos/m34. The relation between electric polarization and susceptibilityD) proportional to susceptibility[C) Proportional to square root of susceptibilityD) proportional to susceptibility[35. The divergence theorem applies to a[[A) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ []A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ 37. The electric flux density (D) and the electric field internity (E) interrelated by[]38. First Maxwell's equation is[][]	D) All the above				
29. The unit of electric flux is[]A) CoulombB) Coulomb/m²C) WeberD) Newton/ Coulomb30. Coulomb's law States that[A) F=Q1Q2/4 π cR²B) F=Q1/4 π c RC) F=Q2/4 π RD) None31. The electric flux density D is related to E as[A) D=EB) cD=EC) D=cED) None32. The electric displacement current density is measured in[A) coulombs/meterB) coulombs /meter ² C) volts/mD) amp/m²33. Conductivity is measured in[A) ohm-mB) ohms/mC)mho-mD) mhos/m34. The relation between electric polarization and susceptibilityndicates that electric Polarizations isA) Independent of susceptibilityB) inversely proportional to susceptibility[C) Proportional to square root of susceptibilityD) proportional to susceptibility[35. The divergence theorem applies to a[[A) Static field onlyB) time varying field onlyC) bth A & BD) magnetic fields only36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ [[A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ 37. The electric flux density (D) and the electric field intensity (E) interrelated by[[A) $D=cE$ B) $D=E/c$ C) $D=cE^2$ D) $D=\mu E$ 38. First Maxwell's equation is[[]	28. Find the Laplacian of the Potentia	al function V= $2x^2$	$^{2}+y^{2}+z^{2}$		[]
A) CoulombB) Coulomb/m²C) WeberD) Newton/ Coulomb30. Coulomb's law States that[]A) F=Q1Q2/4π & R²B) F=Q1/4π & RC) F=Q2/4π RD) None31. The electric flux density D is related to E as[]A) D=EB) ε D=EC) D= ε ED) None32. The electric displacement current density is measured in[]A) coulombs/meterB) coulombs /meter ²C) volts/mD) amp/m²33. Conductivity is measured in[]A) ohm-mB) ohms/mC) mho-mD) mhos/m34. The relation between electric polarization and susceptibility indicates that electric Polarizations is[]A) Independent of susceptibilityB) inversely proportional to susceptibility[]C) Proportional to square root of susceptibilityD) proportional to susceptibility[]35. The divergence theorem ples to a[][]A) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Potential function V=x²+y²-z[][]A) 2V/m2B) 6 V/m2C) 4 V/m2D) 8 V/m237. The electric flux density (D) and the electric field internsity (E) interrelated by[][]A) D= ε B) D= E/ε C) D= ε 2D) D= μ E[]38. First Maxwell's equation is[][][][]	A) 2V/m2	B) 6 V/m2	C) 4 V/m2	D) 8 V/m2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29. The unit of electric flux is				[]
A) $F=Q1Q2/4\pi \epsilon R^2$ B) $F=Q1/4\pi \epsilon R$ C) $F=Q2/4\pi R$ D) None31. The electric flux density \Box is related to Ξ as[A) $D=E$ B) $\epsilon D=E$ C) $D=\epsilon E$ D) None32. The electric displacement current density is measured in[A) coulombs/meterB) coulombs /meter 2 C) volts/mD) amp/m ² 33. Conductivity is measured in[A) coulombs/meterB) ohmos/meter 2 C) volts/mD) mhos/m34. The relation between electric plarization and susceptibility indicates that electric Polarizations is[34. The relation between electric plarization and susceptibility indicates that electric Polarizations is[35. The divergence theorem applies to a[]A) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ []A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ 37. The electric flux density (D) and the electric field intensity (E) interrelated by[]A) $D=\epsilon E$ B) $D=E/\epsilon$ C) $D=\epsilon E^2$ D) $D=\mu E$ 38. First Maxwell's equation is[]	A) Coulomb	B) Coulomb/m ²	C) Weber	D) Newton/ Coulor	nb
31. The electric flux density D is related to E as[]A) D=EB) ε D=EC) D= ε ED) None32. The electric displacement current density is measured in[A) coulombs/meterB) coulombs /meter ² C) volts/mD) amp/m ² 33. Conductivity is measured in[A) ohm-mB) ohms/mC)mho-mD) mhos/m34. The relation between electric polarization and susceptibility indicates that electric Polarizations is[[A) Independent of succeptibilityB) inversely proportional to susceptibilityC) Proportional to square root of susceptibilityD) proportional to susceptibility35. The divergence theorem applies to a[A) Static field onlyB) time varying field onlyC) both A & BA) 2V/m2B) 6 V/m2C) 4 V/m2D) 8 V/m237. The electric flux density (D) and the electric field intensity (E) interrelated by[A) D= ε B) D= E/ε C) D= ε E ² D) D= μ E38. First Maxwell's equations[]	30. Coulomb's law States that				[]
A) D=EB) ε D=EC) D= ε ED) None32. The electric displacement current density is measured in[A) coulombs/meterB) coulombs /meterC) volts/mD) amp/m²33. Conductivity is measured in[A) ohm-mB) ohms/mC)mho-mD) mhos/m34. The relation between electric polarization and susceptibility indicates that electric Polarizations is[A) Independent of susceptibilityB) inversely proportional to susceptibility[C) Proportional to square root of susceptibilityD) proportional to susceptibility[35. The divergence theorem applies to a[[A) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Laplacian of the laplacian of the electric field intensity (E) interrelated by[[A) 2V/m2B) 6 V/m2C) 4 V/m2D) 8 V/m2[37. The electric flux density (D) and the electric field intensity (E) interrelated by[[A) D= ε B) D= E/ε C) D= ε ED) D= μ E[38. First Maxwell's equation is[[[A) F=Q1Q2/4 $\pi \epsilon R^2$	B) F=Q1/4π ε R	C) F=Q2/4π I	R D) None	
32. The electric displacement current density is measured in [] A) coulombs/meter B) coulombs /meter ² C) volts/m D) amp/m ² 33. Conductivity is measured in [] A) ohm-m B) ohms/m C)mho-m D) mhos/m 34. The relation between electric polarization and susceptibility indicates that electric Polarizations is [] A) Independent of susceptibility B) inversely proportional to susceptibility [] C) Proportional to square root of susceptibility D) proportional to susceptibility [] 35. The divergence theorem applies to a [] [] A) Static field only B) time varying field only C) both A & B D) magnetic fields only] 36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ [] A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$] 37. The electric flux density (D) and the electric field intensity (E) interrelated by [] A) $D=\epsilon E$ B) $D=E/\epsilon$ C) $D=\epsilon E^2$ D) $D=\mu E$ [38. First Maxwell's equation is [] []	31. The electric flux density D is rela	ted to E as			[]
A) coulombs/meterB) coulombs /meterC) volts/mD) amp/m²33. Conductivity is measured in[A) ohm-mB) ohms/mC)mho-mD) mhos/m34. The relation between electric polarization and susceptibility indicates that electric Polarizations is[A) Independent of susceptibilityB) inversely proportional to susceptibility[C) Proportional to square root of susceptibilityD) proportional to susceptibility[35. The divergence theorem applies to a[[A) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ [[A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ [37. The electric flux density (D) and the electric field interrelated by[[[A) $D=\epsilon E$ B) $D=E/\epsilon$ C) $D=\epsilon E^2$ D) $D=\mu E$ [38. First Maxwell's equation interrelation interrelati	A) D=E	B) εD=E	C) D=EE	D) None	
33. Conductivity is measured in[]A) ohm-mB) ohms/mC)mho-mD) mhos/m34. The relation between electric polarization and susceptibility indicates that electric Polarizations is[A) Independent of susceptibilityB) inversely proportional to susceptibility[C) Proportional to susceptibilityD) proportional to susceptibility[35. The divergence theorem applies to a[[A) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ [[A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ 37. The electric flux density (D) and the electric field intensity (E) interrelated by[[A) $D=\epsilon E$ B) $D=E/\epsilon$ C) $D=\epsilon E^2$ D) $D=\mu E$ 38. First Maxwell's equation is equation in the intensity is equation is equation in the intensity is equation in the	32. The electric displacement current	density is measu	red in		[]
A) ohm-mB) ohms/mC)mho-mD) mhos/m34. The relation between electric polarization and susceptibility indicates that electric Polarizations is34. The relation between electric polarization and susceptibility indicates that electric Polarizations is34. The relation between electric polarization and susceptibility indicates that electric Polarizations is34. The relation between electric polarization and susceptibility indicates that electric Polarizations is34. The relation between electric polarization and susceptibility indicates that electric Polarizations is34. The relation between electric polarization and susceptibility indicates that electric Polarizations is35. The divergence theorem applies to a35. The divergence theorem applies to a36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ 37. The electric flux density (D) and the electric field intensity (E) interrelated by37. The electric flux density (D) and the electric field intensity (E) interrelated by38. First Maxwell's equation is38. First Maxwell's equation is	A) coulombs/meter	B) coulombs /me	eter ² C) volts/m	D) amp/m ²	
34. The relation between electric polarization and susceptibility indicates that electric Polarizations is[A) Independent of susceptibility C) Proportional to square root of susceptibility D) proportional to susceptibilityB) inversely proportional to susceptibility D) proportional to susceptibility35. The divergence theorem applies to a A) Static field only B) time varying field only C) both A & B D) magnetic fields only[36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ A) $2V/m2$ []37. The electric flux density (D) and the electric field intensity (E) interrelated by A) $D=\varepsilon E$ []38. First Maxwell's equation is[]	33. Conductivity is measured in				[]
A) Independent of susceptibilityB) inversely proportional to susceptibilityC) Proportional to square root of susceptibilityD) proportional to susceptibility35. The divergence theorem applies to a[A) Static field onlyB) time varying field onlyC) both A & BA) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ []A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ 37. The electric flux density (D) and the electric field intensity (E) interrelated by[]A) $D=\varepsilon E$ B) $D=E/\varepsilon$ C) $D=\varepsilon E^2$ D) $D=\mu E$ 38. First Maxwell's equation is[]	A) ohm-m	B) ohms/m	C)mho-m	D) mhos/m	
A) Independent of succeptibilityB) inversely proportional to susceptibilityB) inversely proportional to susceptibilityC) Proportional to succeptibilityD) proportional to susceptibilityD) proportional to susceptibility35. The divergence theoremulties to a D proportional to susceptibility D A) Static field onlyB) time varying field \neg C) both A & BD) magnetic fields only D 36. Find the Laplacian of the Vetential function $V=x^2+y^2-z$ [D A) 2V/m2B) 6 V/m2C) 4 V/m2D) 8 V/m2 D 37. The electric flux density (D) and the electric field intensity (E) interrelated by A) D= ϵ E[D B) D= E/ϵ C) D= ϵ E ² D) D= μ E D 38. First Maxwell's equationI I I	34. The relation between electric pol	arization and sus	ceptibility indicates	that electric Polariza	ations is
C) Proportional to square root of susceptibility D) proportional to susceptibility 35. The divergence theorem applies to a [] A) Static field only B) time varying field only C) both A & B D) magnetic fields only 36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ [] A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ 37. The electric flux density (D) and the electric field intensity (E) interrelated by [] A) $D=\epsilon E$ B) $D=E/\epsilon$ C) $D=\epsilon E^2$ D) $D=\mu E$ 38. First Maxwell's equation is []					[]
35. The divergence theorem applies to a[A) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ [A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ 37. The electric flux density (D) and the electric field intensity (E) interrelated by[A) $D=\epsilon E$ B) $D=E/\epsilon$ C) $D=\epsilon E^2$ D) $D=\mu E$ 38. First Maxwell's equation is[]	A) Independent of susceptibil	ity	B) inversely [proportional to suscep	ptibility
A) Static field onlyB) time varying field onlyC) both A & BD) magnetic fields only36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ [A) 2V/m2B) 6 V/m2C) 4 V/m2D) 8 V/m237. The electric flux density (D) and the electric field intensity (E) interrelated by[A) D= ϵ EB) D= E/ϵ C) D= ϵ E ² D) D= μ E38. First Maxwell's equation is[]	C) Proportional to square root	t of susceptibility	D) proporti	onal to susceptibility	
36. Find the Laplacian of the Potential function $V=x^2+y^2-z$ [A) 2V/m2B) 6 V/m2C) 4 V/m2D) 8 V/m237. The electric flux density (D) and the electric field intensity (E) interrelated by[]A) D= ϵE B) D= E/ϵ C) D= ϵE^2 D) D= μE 38. First Maxwell's equation is[]	35. The divergence theorem applies t	o a			[]
A) $2V/m2$ B) $6 V/m2$ C) $4 V/m2$ D) $8 V/m2$ 37. The electric flux density (D) and the electric field intensity (E) interrelated by[A) $D=\epsilon E$ B) $D=E/\epsilon$ C) $D=\epsilon E^2$ D) $D=\mu E$ 38. First Maxwell's equation is[]	A) Static field only B) time	varying field on	ly C) both A & B	D) magnetic fields	only
37. The electric flux density (D) and the electric field intensity (E) interrelated by[A) $D = \epsilon E$ B) $D = E/\epsilon$ C) $D = \epsilon E^2$ D) $D = \mu E$ 38. First Maxwell's equation is[36. Find the Laplacian of the Potentia	al function V=x ² +	-y ² -z		[]
A) $D=\epsilon E$ B) $D=E/\epsilon$ C) $D=\epsilon E^2$ D) $D=\mu E$ 38. First Maxwell's equation is[A) 2V/m2 B) 6 V/	′m2	C) 4 V/m2	D) 8 V/m2	
38. First Maxwell's equation is []	37. The electric flux density (D) and	the electric field i	intensity (E) interre	lated by	[]
-	A) $D=\epsilon E$ B) $D=I$	Ξ/ε	C) D= ϵE^2	D) D=µE	
A) $\rho_V = V.D$ B) $\rho_V = V.E$ C) both A & B D) None	38. First Maxwell's equation is				[]
	A) $\rho_V = V.D$ B) $\rho_V = B$	V.E	C) both A & B	D) None	

[]
[]
[]
[]
[]
[]
[]
_
[]
[]
[]
[]
[]
[]
[]
[]
[]
2
[]
[]
age 12

			QUESTION	BANK 2021
C) an electron beam in	a television tube	C) Electric c	current flowing in a co	opper wire
4. Unit of permittivity				[
A) F/m	B) m/F	C) F.m	D) F	
5. Dielectric strength is th		,		
A) Maximum	B) Minimum	C) Zero		nfinity
6. If no free charges exist				. [
A) $D_{1n}-D_{2n}=\rho_s$		C) $D_{1n}-D_{2n}=$	∞ D) ໂ	None
7. A material is said to be				[
A) □/ω□<<1	B) □/ω□>>1	C) □/ω□=1	D)]/ω□=0
8. If a dielectric material of	, ,	,		
susceptibility.	-		·	[
A) 1	B) 2	C) 3	D)4	
9. When an electric field	,	,	,	[
A) F =-e E	B) F =e E	C) F =-e/ E		=e/E
·	rrent at a given point t	,	,	
A) Current density		C) Both		Electric field
1. At boundary condition	· · ·	,		[
A) D_{n2}/ϵ	B) D _{n2}	C) ε D _{n2}	D) n	ione
2. At boundary condition		,		[
A) E_{t2}/ϵ	B) E _{t2}	C) ε E _{t2}	D) 1	None
3. The flux passing throug			,	
A) 60 C	B) 30 C	C) 90 C		20 C
4. Dipole moment of two	,	,	,	
A) $p=Q/d$	B) p=d/Q	C) p=Qd		None
5. In a capacitor, the conduct			,	[
A) Equal	-	not Equal	D) depends on area of	of capacitor plate
26. The displacement current		-		- [
A) $J_D = \frac{\partial D}{\partial t}$	B) $J_D = -\frac{\partial D}{\partial t}$	C) $J_D = -\frac{\partial B}{\partial t}$	D) J	$D = \frac{\partial B}{\partial t}$
<i>ot</i> 27. Polarization of dielectric r		00		<i>01</i>
A) Production of eddy		B) Creation o	of dielectric dipoles	L
C) Release of protons	-	D) absorption	-	
- /		· •		ſ
28. The unit of Polarization is	the same as that of			L
 28. The unit of Polarization is A) Electric field dens 		itensity (E)	C) charge D) d	lielectric flux

A) P=e,E B) P=(e,-1)E C) P=(e,-1)Ee, D) P=(e,-1)e, 30. The capacitance of an insulated conducting sphere of radius R in vacuum is []] A) 2πo,R B) 4πo,R C) 4πo,R ² D) 4πo,R 31. The conductivity of an ideal conductor is []] A) Zero B) infinite C) 100C D) 50nF 32. The continuity equation of the current is based on []] []] J A) Conservation of charge B) Conservation of momentum []] C) Conservation of charge B) Conservation of momentum []] A) Coulomb/ amp B) amp/Coulomb C) Coulomb/ volt D) volt/Coulomb 33. Capacitance is measured in []] A) dielectric field B) dielectric intensity C) delectric sical = []] A) Coulomb/ amp B) amp/Coulomb C) Coulomb/ volt D) volt/Coulomb 34. The maximum value of applied electric field at which the dielectric break down occurs is called []] []] A) dielectric field B) dielectric intensity C) delectric site at which the dielectric break down occurs is called []] A) dielectric field andatori is []] []] A) dielectric field andatori is []] A) Dielectric is a				(QUESTION BANK	2021	
A) $2\pi a R$ B) $4\pi a R$ C) $4\pi a R^2$ D) $4\pi a R$ 31. The conductivity of an ideal conductor is []] A) Zero B) infinite C) 100C D) 50nF 32. The continuity equation of the current is based on []] A) Conservation of the current is based on []] A) Conservation of the current is based on []] A) Conservation of the current is based on []] A) Conservation of the current is based on []] A) Conservation of the current is based on []] A) Conservation of the current is based on []] A) Conservation of the current is based on []] A) Conservation of the current is based on []] A) Conservation of the current is based on []] A) Coulomb/ amp B) amp/Coulomb C) Coulomb/ volt D) volt/ Coulomb 34. The maximum value of applied electric field at which the dielectric break down occurs is called []] A) dielectric field B) dielectric intensity C) density D) volt/ Coulomb 35. Dielectrics can store the energy due to []] []] A) Magnetizzan []] []] A) Zero B) infinite C) 4z50C D) +100C <td>A) P=ɛ_rE</td> <td>B) $P=(\varepsilon_r-1)$</td> <td>)E</td> <td>C) $P = (\varepsilon_r - 1) E \varepsilon_o$</td> <td>D) $P=(\varepsilon_r-1)\varepsilon_r$</td> <td>0</td> <td></td>	A) P=ɛ _r E	B) $P=(\varepsilon_r-1)$)E	C) $P = (\varepsilon_r - 1) E \varepsilon_o$	D) $P=(\varepsilon_r-1)\varepsilon_r$	0	
31. The conductivity of an ideal conductor is [A) Zero B) infinite C) 100C D) 50nF 32. The continuity equation of the current is based on [1 A) Conservation of motion D) Conservation of momentum [1 C) Conservation of motion D) Conservation of velocity 33. Capacitance is measured in	30. The capacitance of an ins	ulated conducting sphe	re of radius R	R in vacuum is		[]
A) Zero B) infinite C) 100C D) 50nF 32. The continuity equation of the current is based on [] A) Conservation of charge B) Conservation of momentum C) Conservation of motion D) Conservation of velocity 33. Capacitance is measured in	A) $2\pi\epsilon_0 R$	B) $4\pi\epsilon_0 R$		C) $4\pi\epsilon_0 R^2$	D) $4\pi\epsilon_0/R$		
32. The continuity equation of the current is based on [] A) Conservation of charge B) Conservation of momentum C) Conservation of motion D) Conservation of velocity 33. Capacitance is measured in [] A) Coulomb/ amp B) amp/Coulomb C) Coulomb/ volt D) volt/ Coulomb 34. The maximum value of applied electric field at which the dielectric break down occurs is called []] A) dielectric field B) dielectric intensity C) dielectric strength D) none 35. Dielectrics can store the energy due to []]] A) magnetization B) Polarization C) density D) electrons 36. The conductivity of ideal conductor is []]] A) Zero B) infinite C) +250C D) +100C 37. Current density is []] A) Scalar quantity B) vector quantity C) both D) none 38. In Dielectrics field B) magnetic field intensity C) electric field D) electrons 39. The phenomena of polarization happen in []] A) Va cv ² B) $Va Lv2$ C) $Va cl2$ D) $Va Ll2$ LINIT —IV </td <td>31. The conductivity of an ic</td> <td>leal conductor is</td> <td></td> <td></td> <td></td> <td>[</td> <td>]</td>	31. The conductivity of an ic	leal conductor is				[]
A) Conservation of charge B) Conservation of momentum C) Conservation of motion D) Conservation of velocity 33. Capacitance is measured in [A) Coulomb/ amp B) amp/Coulomb C) Coulomb/ volt D) volt/ Coulomb 34. The maximum value of applied electric field at which the dielectric break down occurs is called [] A) dielectric field B) dielectric intensity C) dielectric strength D) none 35. Dielectrics can store the energy due to [] A) magnetization B) Polarization C) density D) electrons 36. The conductivity of ideal conductor is [] A) Zero B) infinite C) +250C D) +100C 37. Current density is	A) Zero	B) infinite		C) 100C	D) 50nF		
C) Conservation of motion D) Conservation of velocity 33. Capacitance is measured in	32. The continuity equation of	f the current is based o	n			[]
33. Capacitance is measured in []] A) Coulomb/ amp B) amp/Coulomb C) Coulomb/ volt D) volt/ Coulomb 34. The maximum value of applied electric field at which the dielectric break down occurs is called []] A) dielectric field B) dielectric intensity C) dielectric strength D) none 35. Dielectrics can store the energy due to []] []] A) magnetization B) Polarization C) density D) electrons 36. The conductivity of ideal conductor is []] []] A) Zero B) infinite C) +250C D) +100C 37. Current density is	A) Conservation of c	harge	B) Cons	servation of mom	entum		
A) Coulomb/ ampB) amp/CoulombC) Coulomb/ voltD) volt/ Coulomb34. The maximum value of applied electric field at which the dielectric break down occurs is called[A) dielectric fieldB) dielectric intensityC) dielectric strengthD) none35. Dielectrics can store the energy due to[]A) magnetizationB) PolarizationC) densityD) electrons36. The conductivity of ideal conductor is[]A) ZeroB) infiniteC) +250CD) +100C37. Current density is	C) Conservation of n	notion	D) Cons	servation of veloc	ity		
34. The maximum value of applied electric field at which the dielectric break down occurs is called [] A) dielectric field B) dielectric intensity C) dielectric strength D) none 35. Dielectrics can store the energy due to [] A) magnetization B) Polarization C) density D) electrons 36. The conductivity of ideal conductor is [] A) Zero B) infinite C) +250C D) +100C 37. Current density is [] A) Scalar quantity B) vector quantity C) both D) none 38. In Dielectrics displacement current is under the influence of [] A) Magnetic field B) magnetic field intensity C) electric field D) electric field intensity 39. The phenomena of polarization happen in [] A) Dielectrics B) conductors C) insulators D) none 40. Energy stored in capacitor is [] A) $\frac{1}{2}$ cv ² B) $\frac{1}{2}$ Lv ² C) $\frac{1}{2}$ cl ² D) $\frac{1}{2}$ Ll ² UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic fore F _m on a moving charge is given by [] A) F =QE B) F= V × B 'C) F= Q V × B D) F=0 4. The Lorentz force equation is given by []	33. Capacitance is measured	in				[]
A) dielectric field B) dielectric intensity C) dielectric strength D) none 35. Dielectrics can store the energy due to []] A) magnetization B) Polarization C) density D) electrons 36. The conductivity of ideal conductor is []] []] []] 36. The conductivity of ideal conductor is []] []] A) Zero B) infinite C) +250C D) +100C 37. Current density is []] []] A) Scalar quantity B) vector quantity C) both D) none 38. In Dielectrics displacement current is under the influence of []] []] A) Magnetic field B) magnetic field intensity C) electric field D) electric field intensity 39. The phenomena of polarization happen in []] []] A) $V_2 \operatorname{cv}^2$ B) $V_2 \operatorname{Lv}^2$ C) $V_2 \operatorname{cl}^2$ D) $v_2 \operatorname{Ll}^2$ LUNIT -IV LUNIT -IV LUNIT -IV LUNIT -IV LUNIT -IV A) $V_2 \operatorname{cv}^2$ B) \tilde{f} C) $V_2 \operatorname{cl}^2$ D) $\frac{\partial p}{\partial t}$ A) $Zero$ B) \tilde{f} C) $-\frac{\partial a}{\partial t}$	A) Coulomb/ amp	B) amp/Cor	ulomb	C) Coulomb/ vol	t D) volt/ Coul	lomb	
35. Dielectrics can store the energy due to []] A) magnetization B) Polarization C) density D) electrons 36. The conductivity of ideal conductor is []] A) Zero B) infinite C) +250C D) +100C 37. Current density is []] A) Scalar quantity B) vector quantity C) both D) none 38. In Dielectrics displacement current is under the influence of []] []] A) Magnetic field B) magnetic field intensity C) electric field D) electric field intensity 39. The phenomena of polarization happen in []] []] A) Dielectrics B) conductors C) insulators D) none 40. Energy stored in capacitor is []] []] A) $\sqrt{2} \text{ cv}^2$ B) $\sqrt{2} \text{ Lv}^2$ C) $\sqrt{2} \text{ cl}^2$ D) $\sqrt{2} \text{ Ll}^2$ UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law []] A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\Delta mperes$ 3. The magnetic force F_m on a moving charge is given by []] A) Gauss <	34. The maximum value of a	pplied electric field at v	which the diel	lectric break down	n occurs is called	[]
A) magnetizationB) PolarizationC) densityD) electrons36. The conductivity of ideal conductor is[]]A) ZeroB) infiniteC) +250CD) +100C37. Current density is	A) dielectric field	B) dielectri	c intensity	C) dielectric stre	ngth D) none		
36. The conductivity of ideal conductor is [] A) Zero B) infinite C) +250C D) +100C 37. Current density is [] A) Scalar quantity B) vector quantity C) both D) none 38. In Dielectrics displacement current is under the influence of []] A) Magnetic field B) magnetic field intensity C) electric field D) electric field intensity 39. The phenomena of polarization happen in []] A) Dielectrics B) conductors C) insulators D) none 40. Energy stored in capacitor is []] A) $V_2 \operatorname{cv}^2$ B) $V_2 \operatorname{Lv}^2$ C) $V_2 \operatorname{cl}^2$ D) $V_2 \operatorname{Ll}^2$ UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} =$	35. Dielectrics can store the e	energy due to				[]
A) ZeroB) infiniteC) +250CD) +100C37. Current density is[]A) Scalar quantityB) vector quantityC) bothD) none38. In Dielectrics displacement current is under the influence of[]A) Magnetic fieldB) magnetic field intensityC) electric fieldD) electric field intensity39. The phenomena of polarization happen in[]A) DielectricsB) conductorsC) insulatorsD) none40. Energy stored in capacitor is[]A) $V_2 cv^2$ B) $V_2 Lv^2$ C) $V_2 cl^2$ D) $V_2 Ll^2$ UNIT -IVSTATIC MAGNETIC FIELDS 1. In steady magnetic field $V \times \vec{H} =$ [a) ZeroB) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law[a) GaussB) Faraday'sC) Biot-savartD) Amperes3. The magnetic force F_m on a moving charge is given by[]A) F = QEB) F= V \times B'C) F= Q V \times BD) F=04. The Lorentz force equation is given by[]	A) magnetization	B) Polariza	tion	C) density	D) electrons		
37. Current density is [] A) Scalar quantity B) vector quantity C) both D) none 38. In Dielectrics displacement current is under the influence of [] A) Magnetic field B) magnetic field intensity C) electric field D) electric field intensity 39. The phenomena of polarization happen in [] A) Dielectrics B) conductors C) insulators D) none 40. Energy stored in capacitor is [] A) $\frac{1}{2} \text{ cv}^2$ B) $\frac{1}{2} \text{ Lv}^2$ C) $\frac{1}{2} \text{ cl}^2$ D) $\frac{1}{2} \text{ Ll}^2$ UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\overline{V} \times \overline{H} =$	36. The conductivity of ideal	conductor is				[]
A) Scalar quantity B) vector quantity C) both D) none 38. In Dielectrics displacement current is under the influence of [] A) Magnetic field B) magnetic field intensity C) electric field D) electric field intensity 39. The phenomena of polarization happen in []] A) Dielectrics B) conductors C) insulators D) none 40. Energy stored in capacitor is []] A) $V_2 \operatorname{cv}^2$ B) $V_2 \operatorname{Lv}^2$ C) $V_2 \operatorname{cl}^2$ D) $V_2 \operatorname{Ll}^2$ UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} =$	A) Zero	B) infinite		C) +250C	D) +100C		
38. In Dielectrics displacement current is under the influence of [A) Magnetic field B) magnetic field intensity C) electric field D) electric field intensity 39. The phenomena of polarization happen in [] A) Dielectrics B) conductors C) insulators D) none 40. Energy stored in capacitor is [] A) V_2 cv ² B) V_2 Lv ² C) V_2 cl ² D) V_2 Ll ² UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} = $ [] A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes] 3. The magnetic force F _m on a moving charge is given by [] A) F = QE B) F= V \times B C) F= Q V \times B D) F=0 4. The Lorentz force equation is given by []	37. Current density is					[]
A) Magnetic field B) magnetic field intensity C) electric field D) electric field intensity 39. The phenomena of polarization happen in []] A) Dielectrics B) conductors C) insulators D) none 40. Energy stored in capacitor is []] A) $\frac{1}{2} cv^2$ B) $\frac{1}{2} Lv^2$ C) $\frac{1}{2} cl^2$ D) $\frac{1}{2} Ll^2$ UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} = $ []] A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law []] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F_m on a moving charge is given by []] A) F = QE B) F= V \times B C) F = Q V \times B D) F=0 4. The Lorentz force equation is given by []] []] []]	A) Scalar quantity	B) vector q	uantity	C) both	D) none		
39. The phenomena of polarization happen in [] A) Dielectrics B) conductors C) insulators D) none 40. Energy stored in capacitor is [] A) $\frac{1}{2} \operatorname{cv}^2$ B) $\frac{1}{2} \operatorname{Lv}^2$ C) $\frac{1}{2} \operatorname{cl}^2$ D) $\frac{1}{2} \operatorname{Ll}^2$ UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} =$ [] A) Zero B) \vec{j} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F_m on a moving charge is given by [] A) F = QE B) F = V \times B C) $F = Q V \times B$ D) $F = 0$ 4. The Lorentz force equation is given by []	38. In Dielectrics displaceme	nt current is under the i	nfluence of			[]
A) Dielectrics B) conductors C) insulators D) none 40. Energy stored in capacitor is [] A) $\frac{1}{2} \operatorname{cv}^2$ B) $\frac{1}{2} \operatorname{Lv}^2$ C) $\frac{1}{2} \operatorname{cl}^2$ D) $\frac{1}{2} \operatorname{Ll}^2$ UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} = \cdots$ [] A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F _m on a moving charge is given by [] A) F = QE B) F= V \times B C) F= Q V × B D) F=0 4. The Lorentz force equation is given by []	A) Magnetic field	B) magnetic field in	ntensity	C) electric field	D) electric field in	ntensity	
40. Energy stored in capacitor is [] A) $\frac{1}{2} \operatorname{cv}^2$ B) $\frac{1}{2} \operatorname{Lv}^2$ C) $\frac{1}{2} \operatorname{cl}^2$ D) $\frac{1}{2} \operatorname{Ll}^2$ UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} = []$ A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F _m on a moving charge is given by [] A) F = QE B) F= V \times B C) F= Q V \times B D) F=0 4. The Lorentz force equation is given by []	39. The phenomena of pola	rization happen in				[]
A) $\frac{1}{2} \operatorname{cv}^2$ B) $\frac{1}{2} \operatorname{Lv}^2$ C) $\frac{1}{2} \operatorname{cl}^2$ D) $\frac{1}{2} \operatorname{Ll}^2$ UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} = \cdots$ [] A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F_m on a moving charge is given by [] A) F = QE B) F= V \times B C) F= Q V × B D) F=0 4. The Lorentz force equation is given by []	A) Dielectrics	B) conductors	C) insu	lators I	D) none		
UNIT -IV STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} = $ []] A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law []] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F_m on a moving charge is given by []] A) F = QE B) F= V \times B C) F= Q V \times B D) F=0 4. The Lorentz force equation is given by []]	40. Energy stored in capacity	itor is				[]
STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} = $ [] A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F_m on a moving charge is given by []] A) F = QE B) F= V \times B C) F= Q V \times B D) F=0 4. The Lorentz force equation is given by []]	A) $\frac{1}{2}$ cv ²	B) $\frac{1}{2}$ Lv ²	C) ½ cI ²	² I	D) $\frac{1}{2}$ LI ²		
STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} = $ [] A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F_m on a moving charge is given by []] A) F = QE B) F= V \times B C) F= Q V \times B D) F=0 4. The Lorentz force equation is given by []]							
STATIC MAGNETIC FIELDS 1. In steady magnetic field $\nabla \times \vec{H} =$ [] A) Zero B) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F_m on a moving charge is given by [] A) F = QE B) F= V \times B C) F= Q V \times B D) F=0 4. The Lorentz force equation is given by []]		TT	VIT _IV				
A) ZeroB) \vec{f} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law[A) GaussB) Faraday'sC) Biot-savartD) Amperes3. The magnetic force F_m on a moving charge is given by[]A) $F = QE$ B) $F = V \times B$ `C) $F = Q V \times B$ D) $F = 0$ 4. The Lorentz force equation is given by[]					a		
A) ZeroB) \vec{I} C) $-\frac{\partial B}{\partial t}$ D) $\frac{\partial D}{\partial t}$ 2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law[A) GaussB) Faraday'sC) Biot-savartD) Amperes3. The magnetic force F_m on a moving charge is given by[]A) $F = QE$ B) $F = V \times B$ `C) $F = Q V \times B$ D) $F = 0$ 4. The Lorentz force equation is given by[]	1 In steady magnetic field	<u>81AIIC</u> 7 × H –	MAGNE	LTIC FIELD	<u>></u>	ſ	1
2. The line integral of magnetic field intensity \vec{H} around a closed path is exactly equal to the direct current enclosed by that path is given by law [] A) Gauss B) Faraday's C) Biot-savart D) Amperes 3. The magnetic force F_m on a moving charge is given by [] A) $F = QE$ B) $F = V \times B$ `C) $F = Q V \times B$ D) $F = 0$ 4. The Lorentz force equation is given by []						L]
enclosed by that path is given by law[A) GaussB) Faraday'sC) Biot-savartD) Amperes3. The magnetic force F_m on a moving charge is given by[A) $F = QE$ B) $F = V \times B$ C) $F = Q V \times B$ D) $F = 0$ 4. The Lorentz force equation is given by[1[A) Zero	B) /	C) $-\frac{\partial t}{\partial t}$		$\frac{\partial}{\partial t}$		
A) GaussB) Faraday'sC) Biot-savartD) Amperes3. The magnetic force F_m on a moving charge is given by[]A) $F = QE$ B) $F = V \times B$ `C) $F = Q V \times B$ D) $F = 0$ 4. The Lorentz force equation is given by[]	2. The line integral of magnet	tic field intensity \vec{H} aro	und a closed	path is exactly eq	ual to the direct curr	ent	
3. The magnetic force F_m on a moving charge is given by [] A) $F = QE$ B) $F = V \times B$ C) $F = Q V \times B$ D) $F = 0$ 4. The Lorentz force equation is given by []	enclosed by that path is	s given by la	aw			[]
A) $F = QE$ B) $F = V \times B$ C) $F = Q V \times B$ D) $F = 0$ 4. The Lorentz force equation is given by[A) Gauss	B) Faraday's	C) Biot-	-savart I	D) Amperes		
4. The Lorentz force equation is given by []]	3. The magnetic force F_m on a	a moving charge is give	en by			[]
	A) F =QE	B) $F = V \times B$	`C) F= 0	Q V×B I	D) F=0		
Electromagnetic Fields Page 14	4. The Lorentz force equation	n is given by				[]
Electromagnetic Fields Page 14							
	Electromagnetic Fields					Page 14	ł

			QUESTION BANK 2021
A) F =QE	B) $F = Q (E + V \times B)$	C) $F = Q V \times B$	D) none
5. The Maxwell equation in	time variant field is given	by	[
$\mathbf{A}) \nabla \times \vec{H} = \vec{J}$	B) $\nabla \times \vec{H} = \vec{J} + \frac{\partial D}{\partial t}$	C) $\nabla \times \vec{H} = \vec{J} + \vec{J}$	$\frac{\partial E}{\partial t} \qquad \mathbf{D})\nabla \times \vec{H} = 0$
6. The faraday's law in diffe	erential form is given by		[
A) $\nabla \times \vec{E} = \vec{J}$	B) $\nabla \times \vec{E} = \frac{\partial D}{\partial t}$	C) $\nabla \times \vec{E} = -$	$\frac{\partial B}{\partial t} \qquad \mathbf{D})\nabla \times \vec{E} = \frac{\partial B}{\partial t}$
7. In general magnetic field	intensity is directly propor	tional to	[
A) Voltage	B) current	C) distance	D) None
8. In general magnetic field	intensity is inversely propo	ortional to]
A) Voltage	B) current	C) distance	D) None
). A conductor 6m long lies	along Z direction with a cr	urrent of 2A in a direction.	Find the force experienced
by the conductor if $\vec{B} = 0$.	08 a _x Tesla.		[
A) 0.9 a _y	B) 0.96 a _y	C) 0.96 az	D) 0.96 a _x
0. The magnetic field inter	nsity at the centre of a long	solenoid is	[
A) H= $N \frac{I^2}{l}$	$B)\frac{NI}{l}$	C) $\frac{NI}{l^2}$	D) $\frac{N^2 I}{l}$
1. The total magnetic flux	coming out of closed surface	ce is	[
A) infinite	B) finite	C) zero	D)None
2. The MFI due to an infin	itely long straight conducto	or carrying a current I is	[
A) H= $\frac{I}{2\pi d}$	B) H = $\frac{I}{2d}$	C) H = $\frac{l}{d}$	D) 2dl
13. The line integral of H a	bout any closed path is exa	actly equal to the enc	closed by that path [
A) field	B) potential	C)current	D)None
4. The MFI at the centre of	f the square current carryin	g wire is	[
A) H= $\frac{I}{a}$	B) H = $\frac{\sqrt{2}I}{a}$	C) H = $\frac{2I}{\pi a}$	D) $\frac{\sqrt{2}I}{\pi a}$
15. The expression for biot-	savarts law in integral form	n is	[
A) H= $\int \frac{I.d\vec{l} \times \vec{r}}{4\pi r^2}$	B) H= $\int \frac{I.dl \times \vec{r}}{4\pi r^3}$	C) H= $\int \frac{I.dl \times \vec{r}}{4\pi r}$	D) $\int \frac{I.\overline{dl} \times \overrightarrow{r}}{4r^2}$
6. The Amperes circuital la	aw in integral form is		[
A) $\oint \vec{H} \cdot \vec{dl} = I$	$\mathbf{B})\oint \vec{H}. \ \vec{dl} = \mathbf{J}$	C) $\oint \vec{H} \cdot \vec{dl} = 0$	D) none
7. Point form of Ampere's	circuital law is		[
		C) $\nabla \times \vec{B} = \vec{J}$	$\mathbf{D})\nabla\times\vec{H}=0$
8. The charges is motion p	roduce a		[
A) Electric field	B) magnetic field	d C) electro static fields	D) None
9. If the particle is at rest in	n magnetic fields, then it w	ill experience	[
	D)	(\mathbf{C})	D) none
A) Forces	B) no forces	C) can't say	D) none

		QUE	ESTION BANK	2021	_
A) BILsinO	B) $\vec{F} = I\vec{l} \times \vec{B}$	C) A or B	D) none		
21. The surface integral of B over	r a closed surface S in a r	nagnetic field must be		[
A) BSCOSO	B) BS SINO	C) Zero	D) none		
22. A differential current loop is c	carrying current I have a	a magnetic dipole moment n	n=	[
A) $\frac{I}{A}$	B) IA	C) <i>I</i> ² <i>A</i>	D) None		
3. Magnetic field intensity interr	ms of magnetic flux densi	ity is given as		[
A) $\vec{H} = \mu \vec{B}$	B) $\vec{H} = \frac{\vec{B}}{\mu}$	C) $\vec{H} = \frac{\vec{B}}{\epsilon \mu}$	D) $\vec{H} = \frac{\vec{B}}{\epsilon}$		
4. The concept of displacement of	current was a major contr	ribution attributed to		[
A) Faraday	B) Lenz	C) Lorentz	D) Maxwell		
5. Magnetic fields can exert forc	e on			[
A) Moving charges only	B) Staionary char	rges only C) A and B	D) None		
6. Ampere's law state that the fo	orce \vec{F} between two paral	llel wire carrying current I ₁	and I_2 is equal to	[
A) $\frac{\mu_0 I_1 I_2}{2\pi d}$	B) $\frac{\mu_0 I_1 I_2}{2\pi d} l$	C) $\frac{\mu_0 I_1 I_2}{2d}$	$D)\frac{\mu_0 I_1 I_2}{2\pi dl}$		
7. When a charged particle havin	ng charge Q travels with	velocity V in magnetic field	\vec{B} , it will experie	nce	
a force F_m is given by				[
A) $\overline{F_m} = Q (\vec{V} \times \vec{B})$	B)QVB sinO	C) A or B	D) none	-	
8. The expression for Torque on		,	,	[
A) mB sinO	B) $\vec{m} \times \vec{B}$	C)A or B	D) none	-	
9. The unit of magnetic field inte	,	,	<i>,</i>	ſ	
A) weber	B) $\frac{AT}{T}$	C)Tesla	D)no units	L	
0. The Curl operator used in	771			[
-	B) Magneto static	C) both A and B	D) none	L	
1. The torque on a magnetic dipo			,	[
			D) $\vec{T} = \vec{F}$	L	
2. The MFI at the centre of the c	_,	C)• •···		[
A) H = $\frac{1}{2a}$ E		C) L = $\frac{\sqrt{3}}{2a}$ I	D) L = $\frac{5I}{2a}$	L	
33. Ampere's law state that the fo	-	24	24	[
$A) \frac{\mu_0 I_1 I_2}{2\pi d}$	B) $\frac{\mu_0 I_1 I_2}{2\pi d} l$	$C)\frac{\mu_0 I_1 I_2}{2d}$	$D)\frac{\mu_0 I_1 I_2}{2\pi dl}$	L	
4. When a charged particle havir	ng charge Q travels with	velocity V in magnetic field	\vec{B} , it will experie	nce	
a force F_m is given by		-		[
A) $\overrightarrow{F_m} = Q (\overrightarrow{V} \times \overrightarrow{B})$	B) QVB sinO	C) A or B	D) no	one	
,	, , , , , , , , , , , , , , , , , , ,	a closed path is exactly equa	,		

		Q	UESTION BANK	2021
enclosed by that path is give	en by law			[]
A) Gauss	B) Faraday's	C) Biot savart	D) Amperes	
36. In the expression $\vec{B} = \mathbf{x} \vec{A}$,	is \overrightarrow{A} is called			[]
A) Area of the field	B) vector magnetic p	otential C) scalar magnetic p	otentials D) None	
37. The expression for biot-sav	arts law in integral form	ı is		[]
A) H= $\int \frac{I \cdot dl \times \vec{r}}{4\pi r^2}$	B) H= $\int \frac{I.d\vec{l} \times \vec{r}}{4\pi r^3}$	C) H= $\int \frac{I \cdot dl \times \vec{r}}{4\pi r}$	D) $\int \frac{l \cdot dl \times \vec{r}}{4r^2}$	
38. The faraday's law in integra	al form is given by			[]
A) $emf = -\int_{s} \frac{\partial B}{\partial t} ds$	B) emf = \int_{s}	$\frac{\partial B}{\partial t}$. ds C) $emf = -\int_{s} \frac{\partial L}{\partial t}$.ds D) none	
39. The force of is ex	xperienced between two	parallel conductors carrying	current in opposite	direction.
				[]
A) Attraction	B) Repulsion	C) Zero	D) None	
40. The force of is ex	xperienced between two	parallel conductors carrying	current in same dire	ection.
			D) N	[]
A) Attraction	B) Repulsion	C) Zero	D) None	
	<u>U.</u>	<u>NIT –V</u>		
		ND MAXWELL'S E	QUATIONS	r 1
1. The inductance of a soler		3/2 4	21 ² · · · ·	
A) $L = \frac{N \mu A}{l}$	B) L = $\frac{N\mu}{l}$	C) L = $\frac{N^{*}\mu A}{l}$	D) L = $\frac{N^2 \mu A}{2\pi R}$	
2. The inductance of a Torroid	is given by			[]
A) L = $\frac{N\mu A}{l}$ I	B) L = $\frac{N\mu}{l}$	C) L = $\frac{N^2 \mu A}{l}$	D) L = $\frac{N^2 \mu A}{2\pi R}$	
3. The divergence of magnetic	flux density $\nabla . \vec{B}$ is			[]
A) $\nabla . \vec{B} = \rho_v$	B) $\nabla . \vec{B} = -\rho_v$	C) $\nabla \cdot \vec{B} = 0$	D) none	
4. What is the energy density in	n free space on account	of field intensity H= 1000A/n	m?	[]
A) 0.2 J/m ³	B) 0.628 J/m ³	C) 0.735 J/m ³	D) 0	
5. The scalar magnetic potentia	ls satisfy the	equation		[]
A) Poisson	B) Laplace	C) Both A &B	D) None	
6. The vector magnetic potentia	als satisfy the	equation		[]
A) Poisson	B) Laplace	C) Both A &B	D) None	
7. What is the value of permeal	bility constant μ_0 in fre	e space		[]
A) 8.54×10 ⁻¹² H/m	B) $4\pi \times 10^{-12}$ H/m	C) $4\pi \times 10^{-7}$ H/m	D) 0	
8. The numan's formulae for fi	nding the mutual induct	ance is given by		[]
A) M= $\frac{\mu}{4\pi} \iint_{clc2} \frac{dl_{1.dl2}}{r}$	B) M= $\frac{\mu}{4\pi} \iint_{c1c2} \frac{dl_1}{r}$	C) M= $\frac{\mu I}{4\pi} \iint_{c1c2} \frac{dl_{1.dl_2}}{r}$	D) none	
9. If the two coils L_1 and L_2 are	connected in series aidi	ng the total inductance is		[]
Electromagnetic Fields				Page 17

		Q	UESTION BANK 2021
A) L ₁ +L ₂	B) L ₁ +L ₂ -2M	C) L ₁ +L ₂ +2M	D) $M = \frac{L1L2}{L1+L2}$
10. If the two coils L_1 and I	L ₂ are connected in series o	pposing the total inductance is	s [
A) L_1+L_2	B) L ₁ +L ₂ -2N	$(L_1 + L_2 + 2M)$	$D)M = \frac{L1L2}{L1+L2}$
1. If the two coils L_1 and I	L ₂ are connected in parallel	aiding the total inductance is	[
A) L_1+L_2	B) $L_1 + L_2 - 2N$	L1L2-M2	D) $M = \frac{L1L2 - M^2}{L1 + L2 - 2M}$
2. If the two coils L_1 and I	22 are connected in parallel	opposing the total inductance	is [
A) L ₁ +L ₂	B) L ₁ +L ₂ -2M	A C) $M = \frac{L1L2 - M^2}{L1 + L2 + 2M}$	D) $M = \frac{L1L2 - M^2}{L1 + L2 - 2M}$
3. The energy density in n	nagnetic field is given by		[
A) $\frac{1}{2}\mu H^2$	B) $\frac{1}{2}\mu B^2$	C) $\frac{1}{2}\mu H$	D) none
4. The energy stored in ma	agnetic field is given by	-	[
A) $\frac{1}{2}Ll$	B) $\frac{1}{2}Ll^2$	$C)\frac{1}{2}I^2$	D) none
5. The coefficient of coup	2	2	[
A) K = $M\sqrt{L_1L_2}$	$B)K = \frac{M}{\sqrt{L_1 L_2}}$	C)K= $\sqrt{\frac{M}{L_1L_2}}$	D)None
6. In free space relative pe	ermeability µ,=		[
A) 0	B) 1	C) infinite	D) None
17. What is the unit of Ener	rgy density?		[
A) Joules	B)Weber	C)Joules /m ³	D)Weber/m ³
18. in magnetic fields ∇ . \vec{B}	is		[
$\mathbf{A})\nabla \cdot \mathbf{\vec{B}} = \frac{\rho_v}{\varepsilon}$	$\mathbf{B})\nabla \mathbf{B} = -\mathbf{B}$	$\boldsymbol{\rho}_{\boldsymbol{v}} \qquad \mathbf{C}) \boldsymbol{\nabla} \cdot \overrightarrow{\boldsymbol{B}} = 0$	D) none
9. The transformer inducti	on equation is given by		[
A) emf = $-\oint_{\mathcal{S}} \frac{\partial \vec{B}}{\partial t}$	B) emf = $\oint_{\mathcal{S}}$	$\frac{\partial \vec{B}}{\partial t} \qquad \text{C) emf} = -\oint_{S} \frac{\partial \vec{D}}{\partial t}$	D) emf = $\oint_{\mathcal{S}} \frac{\partial \vec{D}}{\partial t}$
20. The emf induced in a co	oil is directly proportional	to	[
A) flux	B) rate of cha	ange of flux C) curren	nt D) none
21. Find the coefficient of c			[
A) K =1	B) K= 0.5	C) K=2	D) None
22. The inductance of a Tor		N ² 11.4	N ² 4
A) L = $\frac{N\mu A}{l}$	B) L = $\frac{N\mu}{l}$	C) L = $\frac{N^2 \mu A}{l}$	D) L = $\frac{N^2 \mu A}{2\pi R}$
23. The curl of magnetic fie	eld intensity is		[
$\mathbf{A})\nabla \times \vec{H} = \vec{J}$	B) $\nabla \times \vec{H} = 0$	0 C) $\nabla \times \vec{B} = \vec{J}$	$\mathbf{D})\nabla\times\vec{H}=0$
0.4 The unit of scalar ma	gnetic potential is		[
24. The unit of scalar ma			

		QUES	FION BANK	2021	
25. Vector magnetic potential exist	in ragions where Lis			г	
A) Absent	B) Present	C) not related to I	D) None	[1
	,	C) not related to J	D) None	r	1
26. Vector magnetic potential ha			D) A 11	l]
A) Antennas 27 Magnetic scalar potential is defi		C) Microwave ovens	D) All	r	1
27. Magnetic scalar potential is defi	B) \mathbf{J} >0	C) J <0	D) E =0	L]
A) $\mathbf{J}=0$,	,	,	г	T
28. The relation between magnetic	-]
A) $\bar{B} = \nabla . \bar{A}$	B) $\bar{A} = \nabla . \bar{B}$	C) $B = A X \nabla$	D) $B = \nabla X A$	4	
29. If R is the mean radius of toroid	1 with N number of tur	ns and A is the area of	f cross-section	of a to	roi
then Inductance of toroid is				[]
A) $L = \frac{\mu NA}{2\pi r}$	B) $L = \frac{\mu NR}{2\pi A}$	$C) L = \frac{\mu N^2 A}{2\pi r}$	D) None		
30. If M is the mutual inductance b	between two magnetica	ally coupled circuits ha	aving self-indu	uctances	s L
and L ₂ and K is the coefficient of	of coupling between the	em then		[]
A) $M = K \sqrt{L_1 L_2}$	B) K = M $\sqrt{L_1 L_2}$	C) $M = K L_1 L_2$	D) None		
31. The magnetic field in a solenoid	lis			[]
A) H=N/I	B) H=n/I	C) H=NA/I	D) H=I/N		
32. A toroid has air core and has a	cross-sectional area of	10mm ^{2.} It has 1000 tu	rns and its me	an radiu	ıs i
10 mm. Find its inductance.				[]
A) 0.02mH	B) 0.002mH	C) 0.02H	D) 0.02mH		
33. Energy density in a magnetic fie	ld			[]
A) $W_{H}=0.5\mu H^{2}$	B) $W_H=1/2 \ \mu H^2$	C) W _H =1/2 B.H	D) All		
34. Inductance has equivalent use ir	n magnetics as	has in electrosta	atics, including	g storag	e o
energy.				[]
A) Electric filed	B) Electric Flux dens	ity C) Potential	D) Capacitan	ce	
35. Self-inductance is defined as the	e rate of total magnetic	flux linkage to the	1	through	th
coil.				[]
A) Current	B) energy	C) Power	D) flux		
36. The mutual inductance between	two coupled circuit ha	s the property that		[]
A) L ₁₂ >L ₂₁	B) L ₁₂ <l<sub>21</l<sub>	C) L ₁₂ =L ₂₁	D) L ₁₂ ≤ L ₂₁		
37. If a current of 1.0 amp flowing i	n an inductor, L=2 her	nry, the energy stored i	n an inductanc	e []
A) 2 J	B) 1J	C) 2J/m	D) 0.5J		
38. If μ =1.0 μ H/m for a medium, H	I=2.0 A/m, the energy s			[]
Electromagnetic Fields				Page 19	

		QUES	STION BANK 2021
A) 0.5 J/m ³	B) 1µJ/m ³	C) 2µJ/m ³	D) 1J/m ³
39. The force produced by B:	=2wb/m ² on a current element	t of 2 A-m is	[
A) 4 N	B) 1 N	C) 2 N	D) 0.5 N
40. $M_{12} = \frac{N1 \ \emptyset 12}{I2}$ is	inductance between two	o coils	[
A) Self	B) Mutual	C) Series	D) Parallel
41. Current passing through t	the capacitor is called		[
A) Conduction current	B) Convection current C) D	visplacement current	D) All
42. Electromagnetic fields pro	oduced by		[
A) Stationary charges	B) Steady current	C) time-varying curr	rents D) All
43. Except in electrostatics, v	voltage and potential difference	ce are usually]
A) not equivalent.	B) equivalent	C) zero	D) infinity
4. When a conducting loop i	is moving in a static B field, a	an emf is induced in th	e loop. Such an emf is
called as]
A) Motional emf	B) flux cutting emf	C)Static emf	D) a & b
. In case of time varying fi	ields Gauss law is		[
A) Curl H=J+ $\partial D/\partial t$	B) Div $D = \rho_v$	C) Div .B = 0	D) Curl E =- ∂ B/ ∂
2. Formula for displacement	t current		[
A) $\partial \mathbf{D}/\partial t$	B) $\mathbf{J}=J+\partial \mathbf{D}/\partial t$	C) $\mathbf{J}=\boldsymbol{\sigma}\mathbf{E}$	D) $\mathbf{J} = \partial \mathbf{B} / \partial t$
. Who is the founder of ele	ctromagnetic theory		[
A) Faraday	B)Lenz	C)Lorentz	D)Maxwell
. A time-harmonic field is	one that varies	_with time.	[
A) Periodically	B) sinusoidally	C) non-periodically	D)a & b
5. A loop is rotating about t	the y-axis in a magnetic field	$\mathbf{B} = \mathbf{B}\mathbf{a} \sin \mathbf{w} \mathbf{t} \mathbf{a}_{\mathbf{x}} \mathbf{W} \mathbf{b} / \mathbf{m}$	n^2 . The voltage induced
the loop is due to			[
the loop is and is		B) Transform	ner emf
A) Rotional emf		,	
A) Rotional emf	ional and transformer emf	D) none of th	ie above
A) Rotional emfC) A combination of motion			ne above [
A) Rotional emfC) A combination of motion	∇ . B =0 is due to		he above [D) none of these
 A) Rotional emf C) A combination of motion 6. The Maxwell's equation A) B=µH 	∇ . B =0 is due to B) B= μ/H C) non-existe	D) none of th	[
 A) Rotional emf C) A combination of motion 6. The Maxwell's equation A) B=µH 	∇ . B =0 is due to B) B= μ/H C) non-existe	D) none of the	[D) none of these [

			QUESTION BANK	2021	
A) E _x =0	B) H _x =0	C) $E_x=0$ and $H_x=0$	D) E _z =0		
9. E.H of a uniform pla	ine wave is			[
A) EH	B) 0	C) ηE ²	D) ηH^2		
10. The direction of pror	pagation of EM wave is o	btained from		[
A) E×H	B) E.H	C) E	D) H		
11. Velocity of the wave	in an idle conductor is			[
A) Zero	B) very large	C) moderate	D) small		
12. Velocity of EM wave	e in free space is			[
A) Independent of free	equency (f)	B) increase with incr	rease in f		
C) Decrease with inc	rease in f	D) Zero			
13. Pointing vector P =				[
a) E×H	B) E.H	C) ½ E×H	D) $(\mathbf{E} \times \mathbf{H})^2$		
14. Depth of penetration	δ=			[
A) 1/ β	B) 1/ <i>a</i>	C) 1/ <i>y</i>	D) 1/ σ		
15. In pointing vector E>	×H represents			[
A) Electric field per u	-	B) magnetic field pe	er unit area	-	
C) power flow per un		D) All			
16. Velocity of EM wave		, ,		[
A) υ=ω/β	B) $v = \omega / \alpha$	C) $v = \omega/\delta$	D) $v = \alpha / \beta$		
21. Reciprocal of attenua	ation constant is called			[
A) Skin depth		C) drift current	D) displacement cu	rrent	
22. A wave propagating	in the +z direction and th	e wave is called		[
A) Forward travellir	ng wave B) backward	d travelling wave C) w	avelength D) none		
23. The emf induced in coi	ll is given by			[
A) $e = -N \frac{d\phi}{dt}$	B) e =-N $\frac{dI}{dt}$	C)e = $-L \frac{dI}{dt}$	D)A and C		
24. A wave propagating	in the -z direction and the			[
A) Forward trav	elling wave B) backward	d travelling wave C) w	avelength D) none		
25. Skin resistance (Ω/m	n ²) is defined part of	f intrinsic impedance fo	r good conductor	[
A) Real part	B) imaginary part	C) zero	D) none		
26. The field intensity in	a conductor rapidly decr	reases are known as		[
A) Skin depth	B) skin effect	C) pointing field	D) wave field		
27. Skin depth is also know	iown as			[
Electromagnetic Fields				Page 2	<u> </u>

			QUESTION BANK	2021	
A) Wave depth B) p	ointing depth	C) penetration depth	D) drift current		
28. In dielectric medium the displa	acement current	is compared to co	onduction current	[]
A) greater B) e		C) lesser	D) none		
29. The e.m.f is induced in a statio		,	,	[]
A) Statically induced e.m.f	• •	B) dynamically induc	-		-
C) Motional e.m.f		D) none			
30. The e.m.f is induced in a statio	mary closed pat	,	ng field is called	[1
A) Statically induced e.m.f	• •	B) dynamically induc	-	L	L
C) Transformer e.m.f		D) none			
31. Skin Depth $\delta =$		D) none		[1
A) α	B) 1/α	C)1/β	D) β	L	L
32. For a time varying fields ∇ X H=	,	Chip		[1
A) $J + \frac{\partial \vec{B}}{\partial t}$	B) $J + \frac{\partial \vec{D}}{\partial t}$	C) $J + \frac{\partial \vec{E}}{\partial t}$	D) $I + \frac{\partial \vec{D}}{\partial t}$	L	L
	υı	Οi	Ŭ	Г	1
33. Poynting vector A) AXB	B) AXE	C) EXH	D) BXH	L	1
34. The induced voltage opposes the i	,		-	[1
A) Lenz's	B) Faraday's	C) Ampere's	D) Gauss	L	L
35. Time varying fields are due to	, .	× •	D) Gauss	[1
A) Static	B) Accelerate	-	D) Uniform	L	L
36. Time varying fields are due to			i D) Omform	ſ	1
A) Static	B) Accelerate	-	D) Uniform	L	Ţ
37. The induced voltage opposes the	,	,	-	[1
A) Lenz's	B) Faraday's	C) Ampere's	D) Gauss	L	L
38. The induced emf, V_{emf} in any clos	· · ·	× •	-	ages by	
the circuit is calledLav	-	Č.		[]
A) Gauss's	B) Ampere's	C) Lenz's	D) Faraday's		-
39. If a moving loop is kept in a static	· -		/ -	[1
A) Rotational	B) Motional	C) Both	D) None of t	these	-
40. The ratio of transmitted electric fi	·		·	[]
A) Transmission	B) Reflection		D) None	-	
		ared by: J.GOWRISHA		AVAN	ГН
Electromagnetic Fields				Page 2)7